Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Breast Cancer Res ; 26(1): 35, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429789

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype with a poor prognosis. Doxorubicin is part of standard curative therapy for TNBC, but chemotherapy resistance remains an important clinical challenge. Bocodepsin (OKI-179) is a small molecule class I histone deacetylase (HDAC) inhibitor that promotes apoptosis in TNBC preclinical models. The purpose of this study was to investigate the combination of bocodepsin and doxorubicin in preclinical TNBC models and evaluate the impact on terminal cell fate, including apoptosis and senescence. METHODS: TNBC cell lines were treated with doxorubicin and CellTiter-Glo was used to assess proliferation and determine doxorubicin sensitivity. Select cell lines were treated with OKI-005 (in vitro version of bocodepsin) and doxorubicin and assessed for proliferation, apoptosis as measured by Annexin V/PI, and cell cycle by flow cytometry. Immunoblotting was used to assess changes in mediators of apoptosis, cell cycle arrest, and senescence. Senescence was measured by the senescence-associated ß-galactosidase assay. An MDA-MB-231 xenograft in vivo model was treated with bocodepsin, doxorubicin, or the combination and assessed for inhibition of tumor growth. shRNA knockdown of p53 was performed in the CAL-51 cell line and proliferation, apoptosis and senescence were assessed in response to combination treatment. RESULTS: OKI-005 and doxorubicin resulted in synergistic antiproliferative activity in TNBC cells lines regardless of p53 mutation status. The combination led to increased apoptosis and decreased senescence. In vivo, the combination resulted in increased tumor growth inhibition compared to either single agent. shRNA knock-down of p53 led to increased doxorubicin-induced senescence that was decreased with the addition of OKI-005 in vitro. CONCLUSION: The addition of bocodepsin to doxorubicin resulted in synergistic antiproliferative activity in vitro, improved tumor growth inhibition in vivo, and promotion of apoptosis which makes this a promising combination to overcome doxorubicin resistance in TNBC. Bocodepsin is currently in clinical development and has a favorable toxicity profile compared to other HDAC inhibitors supporting the feasibility of evaluating this combination in patients with TNBC.


Assuntos
Inibidores de Histona Desacetilases , Neoplasias de Mama Triplo Negativas , Humanos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Proteína Supressora de Tumor p53/genética , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Apoptose , RNA Interferente Pequeno
2.
J Exp Med ; 220(5)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36828390

RESUMO

Metastatic cancer cells adapt to thrive in secondary organs. To investigate metastatic adaptation, we performed transcriptomic analysis of metastatic and non-metastatic murine breast cancer cells. We found that pleiotrophin (PTN), a neurotrophic cytokine, is a metastasis-associated factor that is expressed highly by aggressive breast cancers. Moreover, elevated PTN in plasma correlated significantly with metastasis and reduced survival of breast cancer patients. Mechanistically, we find that PTN activates NF-κB in cancer cells leading to altered cytokine production, subsequent neutrophil recruitment, and an immune suppressive microenvironment. Consequently, inhibition of PTN, pharmacologically or genetically, reduces the accumulation of tumor-associated neutrophils and reverts local immune suppression, resulting in increased T cell activation and attenuated metastasis. Furthermore, inhibition of PTN significantly enhanced the efficacy of immune checkpoint blockade and chemotherapy in reducing metastatic burden in mice. These findings establish PTN as a previously unrecognized driver of a prometastatic immune niche and thus represents a promising therapeutic target for the treatment of metastatic breast cancer.


Assuntos
Proteínas de Transporte , Neoplasias , Camundongos , Animais , Citocinas/metabolismo , NF-kappa B , Microambiente Tumoral
3.
J Vis Exp ; (190)2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36591990

RESUMO

Reversing the immunosuppressive nature of the tumor microenvironment is critical for the successful treatment of cancers with immunotherapy drugs. Murine cancer models are extremely limited in their diversity and suffer from poor translation to the clinic. To serve as a more physiological preclinical model for immunotherapy studies, this protocol has been developed to evaluate the treatment of human tumors in a mouse reconstituted with a human immune system. This unique protocol demonstrates the development of human immune system (HIS, "humanized") mice, followed by implantation of a human tumor, either a cell-line derived xenograft (CDX) or a patient derived xenograft (PDX). HIS mice are generated by injecting CD34+ human hematopoietic stem cells isolated from umbilical cord blood into neonatal BRGS (BALB/c Rag2-/- IL2RγC-/- NODSIRPα) highly immunodeficient mice that are also capable of accepting a xenogeneic tumor. The importance of the kinetics and characteristics of the human immune system development and tumor implantation is emphasized. Finally, an in-depth evaluation of the tumor microenvironment using flow cytometry is described. In numerous studies using this protocol, it was found that the tumor microenvironment of individual tumors is recapitulated in HIS-PDX mice; "hot" tumors exhibit large immune infiltration while "cold" tumors do not. This model serves as a testing ground for combination immunotherapies for a wide range of human tumors and represents an important tool in the quest for personalized medicine.


Assuntos
Neoplasias , Humanos , Animais , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Endogâmicos NOD , Neoplasias/patologia , Transplante Heterólogo , Imunoterapia/métodos , Modelos Animais de Doenças , Microambiente Tumoral
4.
J Immunol ; 202(1): 292-299, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30510069

RESUMO

Immune profiling of tissue through multiplex immunohistochemistry is important for the investigation of immune cell dynamics, and it can contribute to disease prognosis and evaluation of treatment response in cancer patients. However, protocols for mouse formalin-fixed, paraffin-embedded tissue have been less successful. Given that formalin fixation and paraffin embedding remains the most common preparation method for processing mouse tissue, this has limited the options to study the immune system and the impact of novel therapeutics in preclinical models. In an attempt to address this, we developed an improved immunohistochemistry protocol with a more effective Ag-retrieval buffer. We also validated 22 Abs specific for mouse immune cell markers to distinguish B cells, T cells, NK cells, macrophages, dendritic cells, and neutrophils. In addition, we designed and tested novel strategies to identify immune cells for which unique Abs are currently not available. Last, in the 4T1 model of breast cancer, we demonstrate the utility of our protocol and Ab panels in the quantitation and spatial distribution of immune cells.


Assuntos
Antígenos de Diferenciação/metabolismo , Antígenos/química , Neoplasias da Mama/diagnóstico , Células Dendríticas/imunologia , Imuno-Histoquímica/métodos , Linfócitos/metabolismo , Macrófagos/metabolismo , Animais , Antígenos/metabolismo , Neoplasias da Mama/imunologia , Soluções Tampão , Linhagem Celular Tumoral , Separação Celular , Modelos Animais de Doenças , Feminino , Formaldeído , Humanos , Linfócitos/patologia , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Inclusão em Parafina/métodos
5.
J Leukoc Biol ; 102(2): 277-286, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28356350

RESUMO

Cytokines are pivotal in the generation and resolution of the inflammatory response. The midkine/pleiotrophin (MK/PTN) family of cytokines, composed of just two members, was discovered as heparin-binding neurite outgrowth-promoting factors. Since their discovery, expression of this cytokine family has been reported in a wide array of inflammatory diseases and cancer. In this minireview, we will discuss the emerging appreciation of the functions of the MK/PTN family in the immune system, which include promoting lymphocyte survival, sculpting myeloid cell phenotype, driving immune cell chemotaxis, and maintaining hematopoiesis.


Assuntos
Proteínas de Transporte/imunologia , Citocinas/imunologia , Animais , Humanos , Midkina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...